
ChartDetective: Easy and Accurate Interactive Data Extraction 
from Complex Vector Charts 

Damien Masson Sylvain Malacria∗ Daniel Vogel 
Cheriton School of Computer Science, Univ. Lille, Inria, CNRS, Centrale Lille, Cheriton School of Computer Science, 

University of Waterloo UMR 9189 CRIStAL University of Waterloo 
Waterloo, Canada Lille, France Waterloo, Canada 

dmasson@uwaterloo.ca sylvain.malacria@inria.fr dvogel@uwaterloo.ca 

Edward Lank Géry Casiez†‡ 

Cheriton School of Computer Science, Univ. Lille, CNRS, Inria, Centrale Lille, 
University of Waterloo UMR 9189 CRIStAL 

Waterloo, Canada Lille, France 
lank@uwaterloo.ca gery.casiez@univ-lille.fr 

SELECT FIGURE DRAG & EXTRACT LEVERAGE EXTRACTED DATA

Vector 

representation Re-design

InteractExtract

A

C

B

A B C

Figure 1: ChartDetective is a system capable of recovering a chart’s underlying data by leveraging its vector representation. 
Users select a vector chart and then (A, B) drag-and-drop elements that they which to extract. (C) The extracted data can be 
leveraged for downstream tasks such redesigning or interacting with the fgure. 

ABSTRACT 
Extracting underlying data from rasterized charts is tedious and in-
accurate; values might be partially occluded or hard to distinguish, 
and the quality of the image limits the precision of the data being 
recovered. To address these issues, we introduce a semi-automatic 
system leveraging vector charts to extract the underlying data eas-
ily and accurately. The system is designed to make the most of 
vector information by relying on a drag-and-drop interface com-
bined with selection, fltering, and previsualization features. A user 
study showed that participants spent less than 4 minutes to accu-
rately recover data from charts published at CHI with diverse styles, 
thousands of data points, a combination of diferent encodings, and 

∗Also with Cheriton School of Computer Science, University of Waterloo.
†Also with Institut Universitaire de France. 
‡Also with Cheriton School of Computer Science, University of Waterloo. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc permission 
and/or a fee. Request permissions from permissions@acm.org. 

elements partially or completely occluded. Compared to other ap-
proaches relying on raster images, our tool successfully recovered 
all data, even when hidden, with a 78% lower relative error. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools. 

KEYWORDS 
data extraction, chart reverse-engineering, vector graphics 

ACM Reference Format: 
Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry 
Casiez. 2023. ChartDetective: Easy and Accurate Interactive Data Extraction 
from Complex Vector Charts. In Proceedings of the 2023 CHI Conference on 
Human Factors in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, 
Germany. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/ 
3544548.3581113 

1 INTRODUCTION 
Charts are often the preferred way of presenting data because 
they ofoad cognitive work to the visual system [45, 58]. For read-
ers, accessing the numerical data of charts unlocks a broad range 

CHI ’23, April 23–28, 2023, Hamburg, Germany of applications: they can explore the data to better understand 
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. it [8, 20], generate new visualizations [57, 67, 71], redesign exist-ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00 
https://doi.org/10.1145/3544548.3581113 ing charts [29, 64, 73], answer questions [39, 40, 62], and generate 

https://orcid.org/0000-0002-9482-8639
https://orcid.org/0000-0002-5201-5875
https://orcid.org/0000-0001-7620-0541
https://orcid.org/000-0003-2760-2370
https://orcid.org/0000-0003-1905-815X
https://doi.org/10.1145/3544548.3581113
https://doi.org/10.1145/3544548.3581113
https://doi.org/10.1145/3544548.3581113
mailto:permissions@acm.org
mailto:gery.casiez@univ-lille.fr
mailto:lank@uwaterloo.ca
mailto:dvogel@uwaterloo.ca
mailto:sylvain.malacria@inria.fr
mailto:dmasson@uwaterloo.ca
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581113&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

textual summaries [13, 19, 60], as well as make existing visual-
izations accessible [11, 24], interactive [43, 76], and more informa-
tive [42, 44]. Further, researchers need this data to replicate analyses 
and compare results. However, despite the push for Open Science, 
not all scientists publish their data. This has been particularly true 
in the feld of Human-Computer Interaction; an analysis of 509 
CHI papers published before 2018 found that data was provided in 
less than 1% of cases [1]. Much of authors’ hesitation comes from 
privacy concerns and little incentive or perceived benefts [80], 
suggesting they are unlikely to change their practises. Even if pro-
viding data became commonplace, the issue remains for previously 
published papers for which the data has long been lost. 

One solution to recover data is to analyze charts, a practice 
called “chart reverse-engineering” [63]. By carefully locating series 
and inferring their position in the axis coordinates, the underlying 
data can be estimated. Of course, the more complex and dense the 
chart, the more tedious and error-prone the process becomes. Con-
sequently, tools such as ChartSense [37] and WebPlotDigitizer [68] 
ofer semi-automatic features to make the process easier. The core 
idea is to automate the recovery of the chart’s structure, identifying 
every line, rectangle, and text in the image, and then inferring the 
element’s role such as axis, series or legend. 

However, most chart reverse-engineering approaches rely on 
what can be seen using pixels, and all previous tools operate only 
on raster images. Yet, vector graphics are commonly shared on the 
web [6] or in scientifc publications [12, 13]. In fact, publishers often 
recommend, or even require the use of vector graphics for their 
scalability without loss of resolution [33, 75]. As a result, vector 
charts are ubiquitous, but their potential benefts are lost when 
existing systems rasterize them [2, 18, 37, 65]. 

This focus on raster images is a missed opportunity to improve 
chart reverse-engineering tools in terms of accuracy, usability and 
performance. With raster graphics, image resolution limits the qual-
ity of the data. Even assuming perfect accuracy from the recognition 
system, information is irreversibly lost, either because pixels do 
not capture the full resolution of the original data or because an 
element such as the legend hides part of the information. A pixel 
in a raster chart may represent a fraction of a unit or millions of 
units, even if the original data provided much fner resolution. The 
problem is aggravated when the raster image has compression ar-
tifacts or when the chart is dense with overlapping elements. In 
contrast, charts embedded as vector graphics are ideal for reverse-
engineering because they encode the complete image structure and 
reference all components, even if hidden or overlapped, with an 
exact position and size. 

Leveraging the extra benefts provided by the vector format is 
challenging because it requires understanding the specifcs of the 
fle format, knowledge of how the chart was generated, and the 
ability to access and operate vector graphics editors. In fact, little 
is known about how to recover the data from vector charts, how 
accurate the extracted data is compared to using raster images, 
and if the extra information encoded by the format can help the 
reverse-engineering process. To the best of our knowledge, only 
Choudhury et al. [12] describe an approach for separating curves 
from vector line charts. All other approaches focus exclusively on 
raster images. 

In this paper, we introduce ChartDetective, a tool to extract un-
derlying data from charts by leveraging their vector specifcation 
(Figure 1). The approach creates an interactive pipeline to extract 
data from a chart: a chart in a vector format, such as SVG and PDF, 
is processed and presented in a user interface where its underlying 
data is extracted using an integrated set of interactive selection, 
fltering, and previsualization mechanisms. Leveraging vector in-
formation has several advantages, enabling: novel features (e.g., 
fltering mechanisms); support for a wide variety of charts such as 
bar, line, scatter, and box plots; data recovery with greater accu-
racy and precision than other approaches; and extraction of charts 
exhibiting challenging characteristics such as diverse styles, thou-
sands of data points, multiple encodings, and occluded elements. 

Our work makes the following contributions: (1) Highlight of the 
advantages of vector graphics over raster images from a theoretical 
perspective. (2) Design and implementation of a tool to extract 
underlying data from vector charts demonstrating how using a 
vector representation enables new features and results in high-
quality underlying data. (3) Experiment results showing the system 
is usable when extracting charts with challenging properties from 
real scientifc publications. (4) A technical evaluation using a dataset 
of synthetic and in-the-wild charts validating superior accuracy of 
extracted data compared to existing approaches for raster images. 

2 RELATED WORK 
2.1 Involving Users to Improve Accuracy of 

Chart Data Extraction 
A large body of work looked at fully-automatic pipelines for chart 
extraction, see Davila et al. [16] for a recent survey. While a fully 
automatic approach might be desirable, Davila et al. found that 
most approaches struggle when faced with charts in-the-wild. They 
list common characteristics of charts from PubMedCentral papers1 

noting “despite being common, none of the works covered here dealt 
explicitly with these and other chart complexities”. In fact, this mo-
tivated a chart mining competition held annually since 2019 [15]. 
Yet, as of 2022, the best approach (relying on large deep-learning 
models [50]) could recover only 69% of the data from charts in-the-
wild, and the accuracy of the recovered data is not reported [17]. 
These poor performances may be attributed to the great diversity 
of charts [37] and the difculty to obtain large annotated datasets, 
forcing automatic approaches to use artifcial datasets and limit 
their scope to specifc chart-styles and encodings. As a result, these 
approaches can fail when charts deviate even slightly from the 
training dataset [16]. 

When fully automatic approaches fall short, a common solu-
tion is to resort to manual or semi-automatic approaches to chart 
extraction [70]. Manual approaches to chart extraction such as 
Digitize [65] and Ycasd [26] rely on human annotations: after a cali-
bration step to defne the axes, the user needs to click on every data 
point in the chart. Semi-automatic approaches provide tools relying 
on computer-vision to facilitate and speed up manual extraction. 
For example, WebPlotDigitizer [68], Engauge Digitizer [25], and 
DataThief III [2] include automatic selection tools based on masking 
and colour fltering. The parameters of the underlying algorithms 

1https://www.ncbi.nlm.nih.gov/pmc/ 

https://1https://www.ncbi.nlm.nih.gov/pmc


ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

(e.g., curve ftting, blob detector, line tracing) can be tweaked for 
better results. ChartSense [37] goes one step further by automat-
ically extracting marks from a chart and requiring users to only 
specify critical features like the y-axis, and to check and correct 
the automatic selection. By involving users, these tools support a 
larger variety of charts. 

In this work, we also use a semi-automatic approach to support a 
greater diversity of charts. However, our algorithms leverage struc-
tural information in vector graphics for more accurate extraction. 

2.2 Leveraging Structured File Formats 
Charts can be embedded using formats with more structure than 
raster images (e.g., HTML, D3.js). Perhaps because of their ubiq-
uity, most of the work on chart data extraction revolves around 
rasterized charts. Indeed, any format displayable on-screen can be 
trivially converted to a raster image. However, for the task of chart 
extraction, the structure will need to be recovered through an often 
imperfect vectorization step. 

Instead, others have circumvented this vectorization step by us-
ing formats which preserve structure and semantics. For example, 
D3 [7] and Vega-Lite [72] directly embed chart data and specifca-
tions, making it possible to redesign an existing visualization [29], 
create re-usable styles [30], search visualizations based on structure 
and style [31], answer questions [40] and generate visual explana-
tions [40]. However, these approaches are limited to charts embed-
ded in these specialized formats and do not support the broader 
spectrum of charts in formats such as PDF or SVG. 

Although the semantic role of each shape is lost, the vector for-
mat constitutes a middle ground as it provides precise information 
about chart geometries and vector charts are widely used [6, 12]. 
Previous work leveraged the vector formats to classify visualiza-
tions [6, 74], create visualizations [57], retrieve visualizations based 
on their structure [47], and generate chart animations [25]. While 
some of these work try to recover information about visualizations 
including charts, they are not concerned with obtaining the precise 
underlying data. Instead, they use simplifcations, for example, by 
assuming the data is already available [25] or by recovering only 
high-level characteristics [6, 74], often sufcient to accomplish their 
goals. Closest to our work, Choudhury et al. [12, 13] proposed a 
fully automatic pipeline that extracts information from line graphs 
in a PDF to generate natural language summary descriptions. How-
ever, as is common with automatic pipelines [16], their solution 
relies on strict assumptions. For example, the approach assumes 
each line series has a unique colour, axes lines are close to the 
image boundary, tick marks intersect with axes lines, and legends 
are close to curve paths. 

In this work, we also focus on vector charts. However, we avoid 
making strict assumptions about chart layout and design. Instead, 
we adopt a semi-automatic approach to recover data from diverse 
charts using diferent styles (line, bar, scatter, and box plots). 

3 BACKGROUND 
Charts can be represented in two formats: raster images or vector 
graphics. Below, we review how data can be recovered from both 
formats and what are the theoretical advantages of vector graphics. 

3.1 How Can Data be Recovered From Charts? 
If not readily available, data can often be partially recovered from 
charts as cleaned and aggregated data subsets. Consider how an 
author creates a chart: frst, a chart is generated using visualization 
tools such as matplotlib, ggplot, excel, or tableau in order to turn 
tabular data into a visualization like a bar chart that readers can 
quickly comprehend. The visualization is then exported either as 
a rendered image in a raster fle format (e.g., PNG, JPG, BMP) or 
re-encoded into a vector fle format (SVG, EPS, PDF), and shared by 
being included in a document or a web page. Recovering the data 
visualized by a chart is later accomplished by identifying each data 
point as a shape with a location and size, and transforming those 
into the local coordinate system defned by the chart axes. With 
vector charts, the position and size of each shape are recovered 
from the defnition of vector graphics. In contrast, for raster images, 
the information has to be measured. 

3.2 Advantages of Vector Graphics 
There are several characteristics of vector graphics that make them 
advantageous for extracting chart data. 

3.2.1 Higher Theoretical Precision. Because of how raster and vec-
tor graphics encode information, the precision of the data should 
be higher for vector graphics. 

Raster images are composed of pixels. Given a raster image with 
one linear axis representing � units displayed on � pixels, one pixel 
represents �/� units. For example, a linear axis ranging from 0 to 
1000 displayed over 100 pixels means that each pixel represents 
1000/100 = 10 units. Thus, a value of 0 is indistinguishable from a 
value of 9 because they are the same pixel. In other words, achieving 
a high accuracy when recovering the position of an element in a 
raster image requires a comparatively high resolution, inevitably 
increasing the size of the image fle. 

Vector graphics defne shapes in real number coordinates. Thus, 
precision is limited by the number of decimals used to defne coor-
dinate positions and rounding errors due to coordinate transforma-
tions. To accommodate 32-bit processors, the PDF format uses the 
“single-precision foating-point format” and limits foating point 
numbers to approximately fve decimals (ISO 32000-1:2008§C.2). 
The SVG fle format encodes coordinates decimal numbers in strings 
and does not limit the number of decimals2. As for transforma-
tions, both PDF and SVG specifcations recommend using double-
precision foating-point numbers (ISO 32000-1:2008§7.10.5.1) to re-
duce rounding errors when rendering. However, document viewers 
perform these operations and could use a higher precision format 
if needed. Thus, data values encoded in PDF charts can be theo-
retically recovered with up to fve decimals with no impact on fle 
size (the foating value will occupy 32 bits regardless of the number 
of decimals). The precision of values extracted from SVG charts 
is theoretically not bounded. Returning to our previous example, 
obtaining the same fve-decimal level of precision with a raster 
chart ranging from 0 to 1000 would require 100 million pixels. 

3.2.2 Recovery of Occluded Data. The vector graphic can include 
all geometry in a visualization, regardless of what is viewable in 
a fnal rendering. In particular, by default occluded shapes are 

2https://www.w3.org/TR/SVG/ 

https://www.w3.org/TR/SVG/


CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

included, even if completely hidden when rendered. This enables 
the recovery of occluded data, a common issue with many charts [16, 
37]. For example, a legend often hides part of a series, line series 
might overlap or cross each other, or a dense scatterplot might have 
clusters of indistinguishable points due to stacking. 

3.2.3 Reduced Ambiguity. Classifying the role of elements in a 
chart is challenging in general [17, 37, 63] and raster image com-
pression makes this even more difcult. For example, artifacts like 
blurry edges and irregular fll colours make elements hard to auto-
matically separate. Additionally, rasterized text such as alphanu-
meric labels and annotations has to be located and recognized using 
Optical Character Recognition (OCR). With vector graphics, shapes 
are clearly identifed and text is often directly accessible. 

3.2.4 Ubiquitous. Most charting tools ofer to export in vector for-
mats, and this format is commonly used to share charts. On the 
web, the SVG format is natively supported and often preferred in a 
context in which pages are rendered on diferent screens of diferent 
sizes. Specifcally, charts are commonly shared online in the SVG 
format [6]. Because of their scalability properties, vector graphics 
also represent a substantial proportion of all charts included in doc-
uments. For example, the popular PDF format allows the inclusion 
of diferent types of content such as text, fonts, raster images, and, 
specifcally vector graphics [54]. In fact, major publishers such as 
IEEE [33] and Springer [75] recommend the use of vector graphics, 
because “Creating and saving your graphics in vector format will 
ensure that your graphics appear as clearly as possible in your f-
nal published article”, and “Vector graphics (rather than rasterized 
images) should be used for diagrams and schemas whenever possible”. 

Quantifying the proportion of vector charts shared on diferent 
platforms and medias is difcult. As an example relevant to the 
HCI community, we counted3 that vector charts represented 38% 
of the 5,855 charts published in the last six years (2015-2021) of 
proceedings at the Conference on Human Factors in Computing 
Systems (CHI). In a similar analysis, Choudhury et al. found up to 
70% of vector charts across the top-50 computer science conferences 
spanning all felds [12]. 

4 CHALLENGES AND DESIGN GOALS 
We frst summarize the main challenges when extracting data from 
vector graphics, then propose a set of system design goals. We use 
these to drive the design of ChartDetective, a new system leveraging 
vector graphics specifcations to extract data from charts. 

4.1 Challenges of Vector Chart Extraction 
When Jung et al. [37] designed ChartSense to extract data from 
rasterized charts, they faced three main challenges: 1) chart styles 
are diverse; 2) visual entities can overlap; and 3) there is no of-the-
shelf solution for text-region-detection. While reverse-engineering 
vector charts help with some of these challenges (see Section 3.2), 
some remain and new ones arise. 

C1: Chart Diversity – Charts vary in the way data is represented 
as graphical shapes and style. To better understand this diversity, 
3We manually annotated which fgures were charts after extracting all fgures in the 
six years of CHI papers. We calculated the proportion of those that did not contain a 
single raster element. 

we manually reviewed and annotated the 5,855 charts we extracted 
from the proceedings of CHI from 2015 to 2021. The majority could 
be classifed into 12 categories: bar chart (43.3%); line chart (25%); 
scatter plot (9.6%); box plot (9.4%); stacked bar (9.3%); heat map 
(0.9%); pie chart (0.8%); violin chart (0.7%); density plot (0.6%); radar 
chart (0.4%); and stacked density plot (0.1%). Some combined dif-
ferent encodings (2%), for example a bar chart combined with line 
series, or a box plot using scatter points. While difcult to quantify, 
we observed many variations in style, such as embellished charts [5], 
diverse colour palettes, annotations, and overlays. Tools to extract 
data from charts require fexibility to adapt to this diversity. 

C2: Inconsistent Vector Specifcations – A raster image is the result of 
exactly one confguration of pixels but vector graphics can be gen-
erated from a theoretically infnite number of shape arrangements. 
We defne shape as a single geometric shape defned in a vector 
graphics language and chart element as a semantic element in a 
chart (e.g., a series, an axis, a legend). In our exploration, we found 
three relationships between shapes and chart elements (Figure 2). 
- One-To-One is when each shape maps to a unique chart element 

(e.g., a line maps to a series). 
- Many-To-One is when multiple shapes represent a single chart 

element. For example, there were two common ways of repre-
senting dashed-lines: applying a “dashed-line” style to a line or 
using several smaller lines, one per “dash”. Even contiguous chart 
elements like a line series are not necessarily encoded as one 
polyline. For example, matplotlib has a tendency to split a single 
line series into smaller connected lines. 

- One-To-Many is when a single shape represents multiple chart 
elements. The vector format is fexible enough to allow the def-
nition of disconnected shapes (by using a moveto primitive when 
defning the path). This behaviour is often exploited to draw all 
the bars from a bar chart using the same shape, or drawing the 
legend and the series at the same time. 

The challenge thus becomes how to divide or group shapes to get 
a one-to-one mapping in order to match humans’ perception of a 
single shape and make the extraction of data possible. 

C3: Hidden Shapes – Vector graphics may contain shapes that are 
invisible in the rendered image such as shapes occluded by other 
shapes. However, some hidden shapes are meaningless and intro-
duced by mistake using vector editing tools such as Inkscape. For ex-
ample, we found text and annotations completely occluded by other 
shapes. They serve no purpose because they are invisible when 
rendered, and most likely result from mistakes. We also observed 
several examples of shapes hidden by modifying their colours in-
stead of being removed. For instance, a user might hide axes or 
grid lines by setting the stroke and fll colour to match the back-
ground. However, these shapes remain in the vector specifcation. 
Of course, these hidden shapes should be ignored, but identifying 
them systematically is difcult because they take various forms. 

C4: Rendered Text – Text in vector graphics can be specifed us-
ing text-specifc vector graphics command to position a string of 
characters using attribute like font and size or by forming letters 
using geometric shapes. For the latter, the text cannot be directly 
recovered as each letter is represented visually not semantically. 



Chart View

Reconstructed Chart
Chart View

Data Table

ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

legend legend

moveto(0,0)

lineto(2,3)

lineto(6,4)

stroke()

moveto(3,5)

lineto(4,5)

stroke()

(a) ONE-TO-ONE

legend

moveto(0,0)

lineto(2,3)

lineto(6,4)

stroke()

moveto(3,5)

lineto(4,5)

stroke() 

(b) ONE-TO-MANY

legend

moveto(3,5)

lineto(3.5,5)

stroke()

moveto(4.5,5)

lineto(4,5)

stroke()

moveto(0,0)

lineto(2,3)

stroke()

moveto(2,3)

lineto(6,4)

stroke()

(c) MANY-TO-ONE

Figure 2: The same chart can be formed with diferent vector shape arrangements: (a) One-To-One when shapes match semantic 
elements; (b) One-To-Many when one shape maps to multiple semantic elements; and (c) Many-To-One when many shapes 
map to a single semantic element. 

In that case, identifying text regions and extracting the text then 
becomes as challenging as with raster images. 

4.2 Design Goals 
Using those main challenges, we formulate a set of design goals to 
guide the development of our system. They consider previous limi-
tations regarding the lack of fexibility and the poor performance 
when faced with charts in-the-wild [15, 16], leverage the advantages 
of semi-automatic rather than fully-automatic solutions [37, 70], 
and follow recommendations for mixed-initiative systems [32, 59]. 

D1: Maximize Data Accuracy – For reliability and repeatability, 
high accuracy means a low relative error between the extracted 
values and ground truth values in the original data. Previous work 
seldom reports accuracy, yet accuracy was necessarily limited by 
the resolution of the raster images [16]. We consider accuracy as 
the utmost priority and aim to leverage vector graphics to obtain 
high-fdelity data. 

D2: Support Diversity – Across various forms of charts (see Chal-
lenge 1), fexibility is required to support diferent ways of encoding 
data (e.g., line, bar, scatter, box) and variations in style (e.g., colour, 
size, shape, organization). In practice, this means making few as-
sumptions [16], and likely incorporating user interaction in the 
extraction process to disambiguate alternative extraction outcomes. 

D3: Minimize User Interaction – While a fully automatic approach 
would be ideal, in practice, the user has to be involved—if only to 
check that the result is correct. Previous work can be placed on 
a continuum from fully manual [26, 65] to semi-automatic [2, 18, 
36, 37, 52, 68] to fully automatic [16]. Our goal is to minimize user 
involvement by automating tedious and long tasks. 

D4: Simplify Verifcation – Checking data extracted from a large, 
dense chart could entail verifying thousands of data cells. Users 
should be able to quickly check that the chart was accurately ex-
tracted, identify mistakes (if any), and correct them. 

5 CHARTDETECTIVE 
ChartDetective is a system to extract underlying data from vector 
charts by leveraging the vector information. A live version of Chart-
Detective is accessible online: http://ns.inria.fr/loki/chartdetective. 
Below, we detail ChartDetective’s interface and functionalities. The 
functionalities try to tackle each challenge and design goal identi-
fed in 4. As such, direct references are added in parenthesis when-
ever a functionality responds to a challenge or design goal. 

5.1 Interface 
ChartDetective has two interfaces: one to upload a fle or docu-
ment and select a chart to extract, and one to extract data from 
a chart. The data extraction interface (Figure 3) consists of three 
main views: 1) The displaying the data extracted from 
the charts so far; 2) The showing the chart undergoing 
data extraction; and 3) the which recreates 
portion of the original chart using data extracted so far. The inter-
face deliberately presents the information in multiple views [81]; 
all views are showing at all times, side-by-side, and the interface 
can be re-arranged by dragging and resizing the three views to 
adapt to diferent screen resolutions. 

5.2 Selection of Chart Elements 
The selection of an element in the chart initiates the extraction pro-
cess. ChartDetective proposes several ways to perform a selection 
even when the targets are small or occluded (C2, C3). 

Simple Selection – Using the , a user selects 
shapes composing the chart by either clicking on them 
one-by-one or by using a marquee selection through 
a mouse-dragging motion for multiple selection and 

small hard-to-select objects. As is common with vector software, 
users can also add and remove elements from their selection by 
holding the shift key. 

Shapes under the cursor or included in the marquee selection, 
are highlighted to preview the selection. A blue animated dashed 
outline highlights shapes because it is salient for shapes of diferent 
sizes and colours. Once selected, shapes are grouped, surrounded 
by a blue rectangle, and become draggable. 

http://ns.inria.fr/loki/chartdetective


Data Table

Data Table
Chart View

Reconstructed Chart
Data TableChart View

CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

Data Table Chart View

Reconstructed Chart

Figure 3: ChartDetective is composed of three views: the showing the chart being extracted; the with 
the tables for X and Y axes and the extracted values; the interactive . 

Fine-grained Selection – While simple selections work 
well for basic charts, selecting elements becomes te-
dious and slow as the number of data points increases 
or their size decreases. In a worst-case scenario, selec-

tion may be impossible for overlapping elements (C3). There are 
two mechanisms to help in these situations. 
• Users can zoom-in using the mouse wheel and pan by dragging 

while holding the space bar . This helps when small elements 
are hard to select or distinguish when the full chart is viewed. 

• There are also two view fltering mechanisms: a colour flter 
(Figure 4b) and a shape flter (Figure 4c). When a chart is loaded, 
all unique colours and shapes used by the chart are identifed and 
displayed as flter buttons. The user can toggle these colours and 
shapes to remove or add associated shapes from the rendered 
chart. This helps particularly with dense charts. For example, 
users can isolate a specifc series in a scatter plot by fltering 
per shape (e.g., only keeping circle-shaped markers or green-
coloured dots). Filters can be combined like a logical “AND” (e.g., 

to select only red circle-shaped markers, see Figure 4d). Once 
only the elements of interest are left, selection is easier and can 
be done with a quick marquee selection (D3). 

5.3 Extraction of Data 
To extract data, ChartDetective relies on drag-and-drop interactions 
where elements selected in the are dropped in the 
appropriate area of the . Depending on the drop zone, 
diferent algorithms are used to extract and analyze the shapes (D3). 

0 1 2 3

Extract Axes – Extracting an axis is accomplished by 
selecting at least two tick marks in the chart, then drop-
ping them on the corresponding horizontal or vertical 
axis of the . Typically, extracting both the X 

and Y axis requires two drag-and-drop interactions. Extracting the 
axis title requires another drag-and-drop by frst selecting the title 
in the chart view, then dropping it on the title of the data table. 

1

2

3

4

5

1 2 3 4 5

Aa

Color:

Shape: Aa

Color:

Shape:

1

2

3

4

5

1 2 3 4 5

Aa

Color:

Shape:

Aa

Aa

Color:

Shape:

(a) Original (all filters) (b) By colour (c) By shape (d) By colour and shape

Figure 4: (a) Shapes in the can be fltered (b) by colour or (c) by shape. (d) Filters can also be combined. 



Data Table

Chart View
Reconstructed Chart

Reconstructed Chart

Data Table

Data Table
Chart View

Chart View

Data Table
Data Table

Data Table

Chart View

ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

Extract Data Points – To add a new series shapes are 
dropped on one of four zones indicated by a title, an 
icon, and a colour: line , bar , box plot , scatter 

. Each drop zone corresponds to a unique encoding 
of the data. ChartDetective supports four types of data visualization 
used by the four most common chart types in CHI publications: bar 
charts, line charts, box plots, and scatter plots (C1). Supporting other 
visualizations is a matter of writing the corresponding algorithm 
which takes a vector shape as input and outputs data points. 

Once the data is extracted, a new row is added to the table using 
the colour of the series to be easily identifable (D4). The correspond-
ing shapes in the become translucent and unselectable 
to allow the selection of shapes potentially hidden behind. These 
translucent shapes also act as a visual guide to immediately see 
what remains to be selected. 

Whenever possible, ChartDetective automatically mines the 
name of the extracted series by searching for a legend in the fgure. 
The algorithm works in two steps: 1) fnd another shape with the 
same colour as the one extracted; and 2) extract the text at the 
right of the shape and use it as the name of the series. While this 
algorithm has obvious failure cases (e.g., black-and-white charts), in 
practice this high-level assumption is more often correct. Errors can 
be corrected by dropping the legend directly in the cell indicating 
the series name. 

Extract Error Bars – ChartDetective supports the extrac-
tion of error values represented as bars or “whiskers”. 
In ChartDetective, error bars are always linked to an 
existing series. As such, after extracting a series and 

adding a new row to the , the user can select error bars 
in the chart and drop them on a zone at the left of the corresponding 
series row. The error bars are matched to series data points based 
on order and the upper and lower bounds are calculated. 

Modify Extracted Values – Extracted series and axes 
in the can be modifed or removed. The 

is editable like a spreadsheet: clicking a cell 
edits a value. Data points can also be added to an exist-

ing series by frst selecting the shapes on the and then 
dropping them directly on the row of an existing series. The added 
shapes and extracted data points are incorporated into the series. 

Similarly, the title of all tables and the name of all rows can be 
edited manually (C4) or updated by dropping text selected from 
the . The selected letters are merged to form words and 
sentences when dropped into the . If no text glyphs are 
found in the selection, the text is recovered using an Optical Char-
acter Recognizer (C4). This is done by frst rendering the selected 
shapes on a blank canvas before passing it to the recognizer. 

5.4 Verify Results 
Mistakes can happen when extracting the data from charts, for 
example: data points can be missed, elements may be incorrectly 
interpreted as data, and legends might be mismatching. In addition 
to providing a view of the data table and an option to export it as a 
CSV fle, ChartDetective provides passive and active mechanisms 
to verify the success of the extraction (D1, D4). 

Reconstructed Overlay – Users can actively check that 
the data cells match their expectation by examining a 
data point overlay updated when positioning the mouse 
cursor above cells in the . Two diferent over-

lays are shown: 1) when hovering over axis values, a vertical or 
horizontal bar shows the extent of the axis where ticks were ex-
tracted; 2) when hovering over a data point from a series, a blue 
cross is rendered at the corresponding position in the chart. This 
allows the user to verify that a data point is correctly extracted and 
inspect the mapping between series shown in the chart and series 
in the data table (D1, D4). For example, to fnd and fx a potential 
mismatch in the legend. 

(2.5, 6)

Reconstructed Interactive Chart – As data is extracted, 
a second chart is progressively reconstructed in the 

view. To make verifcation eas-
ier, the reconstructed chart shares the same visualiza-

tion and style such as colours and marker shapes. This allows the 
user to glance at the and compare it with the 

: a perfect extraction creates a perfect match between 
the two views (D1, D4). The reconstructed chart is interactive; users 
can get information on hover (e.g., exact values), hide series, and 
zoom in on a particular area of the chart. Additionally, the chart can 
be exported to an HTML fle, allowing the generation of interactive 
charts directly after extracting a static chart. 

5.5 Getting Started and Interacting 
ChartDetective supports traditional and advanced interaction mech-
anisms in terms of signifers, feedback, and feed-forward to support 
exploratory behaviours and help users get started. 

5.5.1 Discoverability. ChartDetective follows common guidelines 
to promote discovery such as limiting the number of commands 
available at any given time, making commands distinguishable, and 
providing continuous feedback [55]. Because interactions relying 
on drag-and-drop can be hard to discover [51], we took special care 
to inform users when they could initiate a drag-and-drop interaction 
and where they could drop their selection. New users unaware of 
the drag-and-drop interface are likely to click one of the icons 
below the . Doing so opens a ToolClip [27] showing a 
brief explanation and animation of the drag-and-drop interaction to 
extract new series. Additionally, when a drag-and-drop interaction 
is initiated, possible drop zones are highlighted based on the shapes 
being dragged (Figure 5). For example, a drag selection of text 
elements causes an overlay over all zones accepting text like the 
table title and series’ names (Figure 5B). Conversely, a drag selection 
containing shapes will only highlight zones accepting shapes, and 
hovering over a zone accepting only text turns the zone red and 
the pointer becomes a “prohibition sign” (Figure 5C) to mark the 
zone as invalid. 

5.5.2 Safe Exploration. The interface is designed so that users 
understand the consequence of their actions and that all actions 
can be undone. All commands provide detailed feedback after being 
executed through notifcations at the bottom of the screen. For 
example, when the data extraction fails, a message is shown to 
indicate what might be the reason (e.g., “too few shapes in the 



CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

setosa

setosa

setosaA

B

C

Figure 5: During drag-and-drop interactions, (A) drop zones 
compatible with the selection are highlighted to indicate 
where elements can be dropped. (B) The drop zone turns blue 
if hovered with a selection of the proper type, and (C) red 
otherwise. 

selection.”). Additionally, there is a complete undo/redo mechanism 
to recover from any action. 

5.6 Implementation 
ChartDetective is implemented in TypeScript using React4 for the 
interface, Ploty.js5 to reconstruct an interactive version of the chart, 
Tesseract.js6 to recover rendered text, and PDF.js7 to parse and 
render PDFs. While there are multiple vector formats, internally, 
we use the PDF representation as it is the most low-level and any 
vector format can be trivially converted to PDF. As such, ChartDe-
tective supports all PDF documents conforming to the ISO-32000 
(PDF) specifcation, and also natively support the SVG format using 
svg2pdf8. All modern web browsers are supported. The full source 
code is available online: http://ns.inria.fr/loki/chartdetective. 

5.6.1 Access to Vector Specifications. We modifed PDF.js to store 
and provide low-level vector graphics commands after parsing the 
PDF. This includes retrieving the full list of shapes forming each 
page of a PDF and determining their fnal location and size after 
processing all transformations, group positioning, clipping, and 
bufered rendering. This allows the selection of a sub-part of the 
PDF by only keeping shapes completely within a defned area. 

5.6.2 Pixel-Perfect Selection. Because shapes can take complex 
forms, we implemented selection using a “hit-test bufer” for pixel-
perfect selection with little computational cost. This means charts 
are rendered twice: once to show a preview and once in an of-
screen bufer in which each shape is assigned a unique colour. 
Shape selection is achieved by retrieving the colour of the pixel 
underneath the pointer. The hit-test bufer is only redrawn when 
absolutely necessary such as a change of zoom or when a shape 
flter changes. 

5.6.3 Shape Filtering. The colour flter is relatively straightforward 
to implement: create a list of colours to flter then hide shapes 
with any of those colours. The shape flter requires computing a 
form descriptor: a vector of numbers describing a shape. To create 
efective shape flters, the form descriptor must not be too specifc 

4https://reactjs.org/
5https://plotly.com/javascript/
6https://tesseract.projectnaptha.com/
7https://mozilla.github.io/pdf.js/
8https://github.com/yWorks/svg2pdf.js/ 

while also not too general that all shapes would match. We use 
a normalized Freeman chain-code with 8 connectivity [22]; this 
descriptor is invariant in translation, scale, and rotation, and is 
robust against slight variations of aspect ratios. 

5.6.4 Shape Alignment and Atributes. While ChartDetective makes 
no assumptions on the style of the charts, it relies on attributes 
which are fundamental to the way information is visualized. The 
pseudo-code is provided in Appendix A.1. All shape selections are 
frst sub-divided to recover a consistent specifcation (C2) before 
passed to the extractors. 
(1) Alignment: The centroid of shapes such as axis ticks, line se-

ries, scatter plot markers is used to recover their position. For 
example, it is assumed that lines go over the centre of the data 
points. In a vertical bar chart, the top of a bar is used to get the 
associated value. 

(2) Grid line: If a grid line is found close to the tick, its position is 
used instead, because we found it to be slightly more accurate. 

(3) Box plot: It is assumed that box plots use the original and widely 
used representation frst introduced by Tukey [78]: The inner 
quartiles are represented as a rectangle including any stroke 
outline when calculating values. The median is a line inside this 
rectangle, and any stroke outline is ignored when calculating 
the value. 

6 USABILITY STUDY 
We conducted a user study to see if the current implementation 
of ChartDetective fulflls our design goals in terms of supporting 
diversity (D1) and minimizing user interaction (D3). This study 
focuses on usability, answering the question: can participants use 
ChartDetective? A follow-up study measures the quality of the 
extracted data when compared to other tools (Section 7). 

6.1 Participants 
We recruited 13 participants (22 to 34 age range, mean = 27.8, 7 
identifed as male and 6 identifed as female)9. We screened partici-
pants for basic knowledge of charts: all participants were familiar 
with bar charts, line charts, box plots, scatter plots and error bars 
(self-assessed on a 5-point scale). Remuneration was $15 CAD. 

6.2 Dataset of Charts to Extract 
We extracted 12 charts from the proceedings of CHI from 2015 to 
2021. We consider the four most popular chart types at CHI: line 
charts, bar charts, scatter plots, and box plots. Further, we collected 
three charts per type, according to complexity: 
• Simple: Few series and few data points that all use the same 

encoding. 
• Compound: Two or more encodings are combined to represent 

data points. For example, a bar chart with lines, or a box plot 
with scatter points. 

• Dense: Large number of series and data points, but all data 
points use the same encoding. 

Compound and Dense charts have been notoriously difcult to 
extract using existing systems [16, 37] and thus pose a real challenge. 

9Our study was reviewed and approved by our institutional research ethics board. 
Consent was collected from all participants. 

http://ns.inria.fr/loki/chartdetective
https://8https://github.com/yWorks/svg2pdf.js
https://7https://mozilla.github.io/pdf.js
https://6https://tesseract.projectnaptha.com
https://5https://plotly.com/javascript
https://4https://reactjs.org


ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

Divi&Conq LooseComm LooseTech CloseComm CloseTech

TC
T 

(s
)

0
20

40
60

80

Local Distant

1 2 3 4 5

1

2

3

4

5

Predicted Time (s)

Tr
u
e

Ti
m

e
(s
)

Di!culty-1

CLC KeyTime

0 20 40 60 80 100
Target value [0-100]

− 6

− 4

− 2

0

2

4

Er
ro

r

Bar Horizontal
Bar Vertical

Thumb Horizontal
Thumb Vertical

ï0.04

0.00

0.04

0.009 0.012 0.015
Standard Error

Es
tim

at
e

Significance
Threshold

p<0.01
p<0.05
p>=0.05

GPR SPF ABOMRTSMMGPRA GPROAA

5

4

3

2

1

GEQ ImmersionGEQ Frustration GEQ ChallengeGEQ Positive A!ect

SIMPLE
Few series &

data points

COMPOUND
Multiple 

encodings

DENSE

Many series &

data points

LINE CHART SCATTER PLOTBAR CHART BOX PLOT

Figure 6: Charts that participants had to extract during the usability study. Charts were extracted from the following CHI 
proceedings (left-to-right, top-to-bottom): [49] [83] [46] [23] [9] [79] [14] [4] [21] [38] [56] [34] 

Note that using our categories above, previous work has exclusively 
been tested on Simple charts. We chose charts randomly amongst 
those ftting these criteria to maximize diversity while remaining 
ecologically valid (see selected charts in Figure 6). All charts were 
used by participants unaltered from the original paper; as a result, 
some are missing titles or legends, have overlapping or hidden 
elements, and some have grouped or separated shapes. 

6.3 Procedure and Design 
Participants took part remotely. After watching a two-minute video 
tutorial demonstrating the use of ChartDetective, participants were 
asked to extract the underlying data of 12 charts as accurately as 
possible and to think-aloud while doing so. The experimenter only 
intervened during the frst four Simple charts to answer questions 
and guide participants if necessary; participants worked indepen-
dently for the remaining eight Compound and Dense charts. Par-
ticipants advanced to the next chart by pressing a “Done” button or 
after fve minutes, whichever came frst. After each Simple chart, 
the experimenter asked participants to identify 1) what was dif-
fcult; 2) what was easy; 3) what was tedious; 4) what was fast; 
and 5) what was slow. For each answer, participants also rated its 
importance on a 5-point scale. 

We recorded the participant’s screen and microphone, as well a 
log of interactions with ChartDetective and the fnal extracted data. 
After the session, participants completed a questionnaire includ-
ing a System Usability Scale (SUS) [35]. Finally, the experimenter 
conducted a semi-structured interview. 

The order of the charts varied across participants: The four Sim-
ple charts were always frst, followed by the eight remaining charts. 
The the charts order was counter-balanced within these two groups. 

Overall, each participant extracted data from 4 (Chart Type) × 
3 (Chart Complexity) = 12. 

6.4 Results 
6.4.1 Success Rate. To test the success rate in terms of usability, 
we compare participants’ data to data extracted by one author 
before the experiment. The reasoning is twofold: frst, we want to 
isolate the usability aspect and are not concerned by the fdelity 
of the data extracted by our tool at this stage, only by how well 
can participants use ChartDetective; second, the success rate can 
be directly interpreted as a measure of how close participants were 
to using the tool like an expert user, represented by the author 
who extracted the data. As such a series from the participant data 
is matched with a series from the author data (using a best-ft 
approach). We then classify each data point (i.e., cell in the data 
table) of each series in one of the following four categories. 
• Correct (✓), for a data point that is expected (i.e., present in 

ground-truth data) and that is strictly equal to the ground-truth 
value. 

• Incorrect (x), for a data point that is expected but is not equal 
to the ground-truth value. 

• Missing (-), for a data point that is expected but was not ex-
tracted (i.e., present in ground-truth but not in the participants’). 

• Unwanted (+), for a data point that was not expected (i.e., 
present in participant data but not in ground-truth). 
We measure success rate by calculating the rates of these four cat-

egories. For the Correct and Incorrect rate, we divide the count 
by the minimum between the number of data points in ground-
truth and the number of data points in the participant data. For 
the Missing rate, we divide the count by the number of points in 
ground-truth. For the Unwanted rate, we divide the count by the 
number of points in the participant data. 

Overall Success Rate – Overall, participants extracted charts 
with high success: 99% (SD=5.9) of the extracted data were 
Correct, with only 0.2% (SD=1.5) Incorrect data points (D1). 



CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

Complexity Bar Chart Line Chart Scatter Plot Box Plot Total 
✓ x - + ✓ x - + ✓ x - + ✓ x - + ✓ x - + 

Simple 100 
Compound 100 
Dense 100 

0 0 1.3 0 0 0 0 0 1 0 0.4 0 0 0.1 0.6 
0 0 1.5 100 0 0 

100

0 100

100

0 100
0.1 89.6 1.5 12.3 9.2 

100

0 98.6
99.8 0.1 0.2 

100

3.9 99.7
0 97.4 0.4 3.1 2.7 

0 0 0 0.7 0 0 0.4 1.8 0.1 0.6 1 

Total 100 0 0 0.9 100 0 0.2 0 96.5 0.5 4.1 3.4 99.5 0.2 0.8 1.3 99 0.2 1.3 1.4 

Table 1: Breakdown of the success rate when comparing the series extracted by participants to the series of the ground-truth 
data. All values are percentages. Correct (✓), Incorrect (x), Missing (-), and Unwanted (+). 

Table 1 presents the breakdown of the results. In fact, participants 
achieved perfect success rate in terms of Correct data for all bar 
charts and line charts, and above 98% for all other charts. The 
only exception being the Compound scatter plot with only 89.6% 
(SD=17.7) of Correct data. Below, we further investigate the cause 
of some of these results. 

Confusion for Compound Scatter Plot – We found that the lower 
scores for the Compound scatter plot were due to participants 
misunderstanding the chart. In fact, the data points extracted by 
participants were Correct, but not separated in series as it should 
have been. Both P1 and P5 interpreted diferent series as one single 
series (e.g., grouping all yellow dots as one single series, instead of 
distinguishing between crosses and circles). Because we calculate 
success rate by matching one series to another, if a series is missing, 
its data points count as Incorrect. Similarly, the extra data points 
merged within the same series count as Unwanted data. If, instead, 
we look for data points independent of series, the percentage of 
Correct data for the Compound scatter plot reaches 99%. 

Filtering Causing Unwanted Data – Participants sometimes selected 
the legend as part of a series. For example, with the Simple scatter 
plot, all participants made the selection of series easier using colour-
fltering. However, doing so isolates the data points making the 
legend appear as part of the series. As a result, three participants 
selected circles from the legend, creating Unwanted data. 

Selection Difculties with Box Plots – Box plots required a precise 
selection of the whole element at once. However, when the boxes 
were close to other elements (e.g., the axis in the Compound box 
plot), some participants inadvertently included other elements as 
part of the box, creating an Incorrect data point. 

6.4.2 Time. On average, participants extracted charts in 3min 
6s (SD=1min 18s) (D3) Only 2 participants were not able to complete 
extractions within 5 minutes: P4 could not extract all error bars for 
the Dense bar chart and P10 did not have time to select the last two 
blue lines in the Compound scatter plot. The most dense charts 
were not necessarily the slowest to extract. For instance, extracting 
the Dense scatter plot and its 2,000 data points took only 1min 58s 
(SD=23s). But overall, Dense charts were the slowest (M=3min 17s, 
SD=1min 22s), followed by Simple charts (M=3min 12s, SD=1min 10s) 
and Compound charts (M=2min 50s, SD=1min 19s). Still, all average 
times were well under 4 minutes, confrming that ChartDetective 
minimizes user interaction enough to allow the extraction of charts 
in reasonable time (D3). 

6.4.3 Error Bars and Series’ Names. Participants correctly ex-
tracted 98.4% (SD=11) of the error bars and 82.8% (SD=34.1) of 
series names. These results were calculated on a subset of charts 
considering that not all charts had error bars or legends. It is un-
clear why the series names score is lower; some participants did 
not extract the series names for no apparent reasons, even though 
they were aware of the feature as they all did it for Simple charts. 

6.4.4 Usability. On average, the System Usability Score was 
90 (Mdn=90, SD=4.2). For reference, a System Usability score above 
85 is considered excellent [3]. 

On a 5-point scale, participants rated all features of Chart-
Detective as useful (4 or above): participants “strongly agree” on 
the usefulness of the colour flter (Mdn=5, SD=0, ), the shape 
flter (Mdn=5, SD=0.7, ), the selection system (Mdn=5, SD=0.3, 

) and the reconstructed chart (Mdn=5, SD=0.7, ). Addi-
tionally, participants “agree” that the overlay was useful (Mdn=4, 
SD=1.5, ). 

Regarding participants self-assessed performance with Chart-
Detective, they all agreed that they could extract and reconstruct 
charts accurately (Mdn=5, SD=0.5, ) and that they were in con-
trol of what they wanted to extract (Mdn=5, SD=0.6, ). Finally, 
they all agreed that they would like to use the system again (Mdn=5, 
SD=0.4, ). 

6.4.5 Strategies. While the tasks were identical across participants, 
they sometimes adopted diferent strategies to extract the data. 

Filter to Isolate, to Declutter, or to Guide? – All 13 participants 
used the flters but we observed three distinct strategies: fltering 
to isolate only the element to select (i.e., only one active flter); 
fltering to declutter the image by removing the few elements that 
were preventing a selection; fltering to guide the selection by going 
through each colour one-by-one (sometimes multiple times) to be 
sure not to miss any series. Participants using the declutter strategy 
had the advantage of preserving visual context. For example, it 
made it easier to distinguish marks that are part of the legend and 
would have looked like data had the isolate strategy been used. 

Step Order – The order in which to perform the extraction was 
often a trade-of between speed and cognitive load. Some partic-
ipants extracted all series (e.g., bars, lines) before moving on to 
error bars or legends, making the selection process easier by repeat-
ing the same task and reusing the same flters. Others preferred 
to extract the error bars and the legend right after extracting the 
corresponding series, making it easier to match a series with its 



ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

meta-data. Participants would often decide on a strategy based on 
chart complexity. 

Selection Strategy – Participants either selected elements pre-
cisely, often one-by-one, using the zoom-in function if necessary, 
or they made a frst rough selection then refning it by using SHIFT 
to add to or remove elements. Some participants also relied on the 
ghost shape mechanism to speed up the selection of the last series: 
once a series is extracted, its shapes become unselectable, meaning 
that when only one series is left, the shapes that are selectable will 
necessarily belong to the last series. 

6.4.6 Comments. Overall, participants were positive about Chart-
Detective and its functionality. Below, we group participant com-
ments from the interview and during the study around a set of 
themes that were frequently mentioned. Due to the use of semi-
structured interviews, some of these themes were only mentionned 
by a subset of participants. 

Learnability – A few participants commented on learnability. All 
agreed that the tool was quick to learn. 

P6 – "I liked that the cognitive load was pretty low, 
like, it was super fast to learn... I got markedly better 
after like 2, 3 tries. I really liked that it had a lot of the 
traditional settings and feel to it." 
P12 – "I’ve been using it for less than an hour and I 
already feel at ease" 

Specifcally, P7, P11, and P13 commented about the drag and drop 
interface saying it made the interaction easy due to the visual 
feedback of what is being dragged and where it can be dropped. 

P7 – "That is actually quite useful that it shows you 
the... sort of see-through thing you’re dragging." 
P11 – "Drag’n’drop is truly useful. It’s super clean, like 
you can easily select and then you immediately see 
where you can drop." 
P13 – "I liked how it was was organized, how you could... 
like it was easy to have that one navigation bar on the 
side and pull everything over and see it appear on the 
[Reconstructed] chart below." 

Most appreciated features – An overwhelming majority of partic-
ipants commented about the colour and shape flters, most cited 
them as one of their favourite features. 

P8 – "Filters are super useful. Really facilitate the task. 
Some [charts] would even be impossible [to extract] 
without." 
P12 – "The flters, I really thought it was a killer-feature. 
Your chart is super crowded, you ask yourself: «Wow, 
how am I gonna do that, it’s too difcult», I do two 
clicks, then it becomes super easy." 

Other features were less often mentioned by participants as some-
thing they liked: the reconstructed chart (P2, P11 P13), the ghost 
shapes (P3, P7, P8), the overlay (P8), how the legend is sometimes 
automatically matched with series (P2), and the coloured table (P12). 

What was tedious, difcult or slow? – After each Simple chart, 
participants were asked what they found tedious, difcult or slow 
and how much using a 5-point scale. The most frequently mentioned 

difculty was the selection of elements (P5, P6, P7, P10, P12, P13), 
although they still rated it as relatively easy on average (from very 
hard to very easy: Mdn=4, SD=.83, ). Specifcally, the selection of 
error bars were most often mentioned as moderately tedious (from 
extremely to not at all: Mdn=4, SD=.71, ) and slow (from very fast 
to very slow: Mdn=3, SD=.75, ). 

P1 – "Selecting error bars. That was difcult, just be-
cause they were overlapping." 
P8 – "Selecting error bars [was slow] because you have 
to select them a bit like... one-by-one to [...] distinguish 
them between series." 

What was easy or fast? – Similarly, we asked participants what 
they found easy and fast. The drag-and-drop interface was most 
commonly cited as being easy (from very hard to very easy: Mdn=5, 
SD=0, ). The selection after applying flters was most often 
mentioned as fast (from very fast to very slow: Mdn=1, SD=.37, ). 

P3 – "The drag and drop... that tool is easy to understand 
and use. And it is easy to isolate the data you want to 
collect [using the flters]." 
P2 – "Selecting the points, thanks to the fltering, it was 
really fast". 

Accuracy perception – While participants were highly accurate 
overall, P7 mentioned that the artifciality of the task might have 
had an impact on the quality of the data extracted. 

P7 – "I’m not sure how accurately I actually covered... 
copied the charts, I have to say. Because the image [Re-
constructed chart] was relatively small, and I did not 
spend a lot of time looking at data points if they were 
correct or not. It was more like a «meh» roughly looks 
the same, fne, cool. [...] Obviously because it is not data 
that I am invested in so I don’t care if it is accurate or 
not." 

7 DATA QUALITY STUDY 
The goal of this study is to measure the quality of the data obtained 
from vector charts and ChartDetective relative to what could be 
obtained using rasterized images and existing tools (D1). Quality 
is defned as how similar the extracted data is compared to the 
original data that was used to create the chart. 

7.1 Dataset 
We create a new dataset of charts for which we know the exact 
underlying data. To cover a wide diversity of chart styles and chart 
generators, we mix generated charts with charts from CHI papers: 
• Generated Charts: We generated four diferent charts (1 bar 

chart, 1 line chart, 1 scatterplot and 1 boxplot) with four diferent 
chart generators: Microsoft Excel for Mac version 16.61, Python 
matplotlib version 3.5.1, Javascript plotly version 4.10.0 and R 
ggplot2 version 3.3.6. All 16 generated charts use a dataset on life 
expectancy and GDP per country obtained from GapMinder10. 
Each chart visualization presented diferent information: line 
charts show the evolution of the life expectancy over the years 
for four regions of the world and with error bars; scatter plots 

10https://www.gapminder.org/data/ 

https://10https://www.gapminder.org/data


CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

show the life expectancy depending on a country’s GDP; and 
box plots show the life expectancy per region and for male and 
female). Generators used the default style parameters. 

• Extracted Charts: Using our dataset of papers with charts pub-
lished at CHI between 2015-2020, we used a script to fnd those 
with vector charts and with data available on Open Science Frame-
work11 (OSF). Only 23 papers fulflled this criteria (74 papers had 
an OSF link, but 44 of those did not contain qualifying vector 
charts, and 7 had no data in their OSF repository). Using rea-
sonable efort, we cleaned and recreated the data used by charts 
in 14 diferent papers and extracted between 1 and 3 diferent 
charts per paper. The fnal study dataset counted 26 charts (13 
bar charts, 6 scatter plots, 5 line charts, and 2 box plots). 

7.2 Baseline 
Like ChartSense [37], we use WebPlotDigitizer as our baseline. 
Other tools either do not provide their source code12 or a work-
ing implementation [37], do not provide a full pipeline to obtain 
the data from charts [12, 13, 63], or are limited in the styles and 
types of charts that they support [13]. Moreover, our comparison 
here focuses on the best achievable results using vector graphics 
compared to raster images. In that regard, the result obtained with 
raster images should be comparable across tools. Thus, in the rest 
of this section we use “rasterized charts” to refer to charts extracted 
using WebPlotDigitizer. 

7.3 Procedure 
One author with hours of experience with both ChartDetective and 
WebPlotDigitizer extracted all charts from our dataset as accurately 
as possible using both tools. The author had no time limitation and 
ensured the data was as accurate as possible. To use WebPlotDig-
itizer, extracted charts were rasterized at 300 dot-per-inch (DPI) 
which is considered high-resolution and recommended by IEEE [33]. 
Generated charts were obtained from chart generators and directly 
outputted as PNGs for WebPlotDigitizer (300DPI), and PDFs for 
ChartDetective. 

7.4 Results 
Dataset n Vector Charts Raster Charts 

Generated 
excel 4 0.24% (0.19) 0.37% (0.21) 
matplotlib 4 0% (0) 0.16% (0.08) 
ggplot2 4 0% (0) 0.13% (0.12) 
plotly 4 0% (0) 0.13% (0.09) 

Extracted 26 0.13% (0.27) 0.68% (0.69) 
Total 42 0.11% (0.23) 0.50% (0.60) 

Table 2: Average relative error of the values obtained from 
vector or raster charts. Standard deviation shown between 
parenthesis. 

11https://osf.io/
12On request, authors of ChartSense could not provide their source code due to pro-
prietary reasons. 

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

Figure 7: Minimal example of a chart generated by Microsoft 
Excel and for which the data is imprecisely depicted. Despite 
the bars representing exact values (10 and 20), they do not 
consistently line up with corresponding grid lines: the grid 
line is either below (blue bar) or above (orange bar). 

Like ChartSense [37], relative error measures how close the 
extracted data is to ground-truth: 

�����������ℎ − ���������� 
�������� ����� = | |

�����������ℎ 

We assume the chart represents the data precisely and accurately, 
so relative error is solely attributed to the extraction tool. Note that 
the expert always made sure no data points were missing. Thus, 
the ground truth data and extracted data had the same number of 
points and in the same order. We calculated the relative error of 
each pair of data points from the ground truth and extracted data, 
and then aggregated them using the mean of all the relative errors. 
This measure corresponds to how close the extracted data is to the 
ground truth. 

Overall, data extracted from vector charts using Chart-
Detective had a signifcantly lower relative error than data 
extracted from rasterized charts using WebPlotDigitizer(0.11% 
vs 0.5%, Student’s t-test p<.05). This is more than 4 times lower, cor-
responding to a factor of 78%. Table 2 breaks down the relative 
error for tool and dataset. 

Efect of Generator – The data obtained with ChartDetective 
from generated vector charts was identical to the ground-
truth with the exception of Excel charts (relative error mat-
plotlib: 0% SD=0, ggplot2: 0% SD=0, plotly: 0% SD=0, excel: 0.24% 
SD=0.19). 

After further investigation, it appears that charts generated with 
Excel are using some approximations and do not perfectly represent 
data. While the problem exists with all types of charts such as line, 
box plots and scatter, the issue becomes obvious by generating bar 
charts with exact real values. Examining the SVG description of 
bar charts generated by Excel, positions of bar tops is inconsistent 
even when data is a series of real and regularly spaced values (e.g., 
50, 60, 70). This is demonstrated by zooming into a bar chart to see 
how bars do not line up consistently with corresponding grid lines 
(Figure 7). We verifed this behaviour with macOS Excel (version 
16.61) and Windows Excel (version 2205). 

https://osf.io/
https://WebPlotDigitizer(0.11


ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

8 DISCUSSION 
Despite the importance of extracting high-fdelity data, approaches 
to chart reverse-engineering predominantly focus on rasterized 
formats, limiting the accuracy of the data obtained. We provide 
theoretical and empirical evidence showing that extracting charts 
using their vector representation has advantages that can lead to 
an improved quality of the extracted data. We also detail the design 
and implementation of the ChartDetective system demonstrating 
how vector information can be used to provide new features, and 
how it can be processed to obtain underlying data. Through a 
usability study, participants found the system highly usable and 
were capable of extracting even the most challenging charts. A 
second study demonstrated that extracting a chart using its vector 
representation lead to higher accuracy of data than when extracting 
the same chart in raster format and using existing tools. 

Comparison to ChartSense. Jung et al. also use the relative error to 
compare their ChartSense system to WebPlotDigitizer [37]: their 
system achieved 0.7% whereas WebPlotDigitizer achieved 0.81%. For 
comparison, we found a relative error of 0.11% with ChartDetective 
and of 0.5% with WebPlotDigitizer. Diferences in our methodol-
ogy likely explain diferent results for WebPlotDigitizer: Jung et 
al. obtained their result from a user study with 16 participants 
whereas our results were obtained by an expert user. Furthermore, 
our dataset was diferent: Jung et al. used line and bar charts found 
on Google Images with at most two series and nine marks per series. 
In contrast, we used a dataset of generated charts and charts pub-
lished at CHI, including charts with hundreds of marks. Regardless, 
both studies suggest that relative error below 0.5% may be out of 
reach for raster chart data extraction using existing approaches and 
that ChartDetective fulflls its goal of maximizing accuracy (D1). 

Control of Anchor Points. ChartDetective difers from other manual 
and semi-automatic tools in that users select whole shapes and 
let the system decide how to handle them to extract the data (D3). 
In contrast, other systems often rely on users directly specifying 
anchor points to defne the exact point depicted by a marker, even 
if this marker takes various forms and sizes. One advantage of our 
system generated anchor points is reduced standard deviation (D1): 
the same shape selection always results in the same value. In con-
trast, giving users control over anchor points inevitably results in 
lower precision due to selection errors or simply because users have 
to “guess” the centroid of shapes. This can vary greatly depending 
on the style (e.g., thick lines or large markers) and the forms of 
the shapes [28, 69]. We advocate for a shape-selection approach 
because users can reliably select shapes (see Study 1) and that our 
assumptions regarding anchor points were valid across a diverse 
set of charts (see Study 2). 

Open Science at CHI. Corroborating the fndings of previous work [1, 
80], and further motivating the need for chart extraction methods, 
we experienced frst-hand the difculty of obtaining data related to 
CHI papers. Of the 3,673 papers published at CHI from 2015 to 2020, 
only 74 papers contained an OSF link (2%). Our automatic mining 
approach likely missed data published using other methods like 
custom webpages. But more importantly, even within these papers, 
we could not always reproduce the charts. This was sometimes due 
to missing data (the OSF link contained other material) or because 

only raw data was provided without guidance to reproduce pro-
cessed data used in charts. For example, the cleaning procedure, 
aggregation method, and formulas applied were missing. Addition-
ally, there was often a mismatch between the data names in the 
chart and labels in the raw data. 

8.1 Limitations and Future Work 
8.1.1 Support For Raster Charts. A large portion of charts remain 
embedded as raster graphics and cannot leverage the benefts pro-
vided by ChartDetective. A tempting alternative to using tools such 
as WebPlotDigitizer [68] could be to vectorize raster charts so that 
they can be used with ChartDetective. New state-of-the-art vec-
torization algorithms [48] might provide the best approximation 
for the location of shapes representing chart elements and possi-
bly help disentangle overlapping shapes. However, many benefts 
provided by “original” vector charts would be lost and the qual-
ity of the input raster image will limit the vectorization process. 
While a vectorization approach can extend our system to rasterized 
charts, it seems unlikely to provide substantial benefts over using 
raster-based extraction tools. 

8.1.2 Optical Character Recognition of Rendered Text. When the 
user study was conducted, participants had an earlier version of 
ChartDetective where rendered text could not be automatically 
retrieved, and required participants to enter it manually. While we 
found rendered text in vector charts to be relatively rare in practise, 
we added OCR support in ChartDetective (C4). Preliminary tests 
suggest excellent performance: we rendered all text in the charts 
used in the usability study, and the OCR engine was able to recover 
97.5% of all characters correctly. A more extensive evaluation is 
needed to make defnitive conclusions. 

8.1.3 Diversity of Chart Styles. The many ways in which charts 
represent and encode data is one of the main difculties faced by 
reverse-engineering approaches [15–17, 37]. We choose to evaluate 
our tool on real charts published at CHI that exhibited challenging 
properties like high density, overlapping shapes and mixing encod-
ing (C1, D2). We encourage other work to do so as well, considering 
such charts are abundant in practice. Of course, our dataset is not 
universally representative. First, we only examine charts in the HCI 
research community, but others communities might have diferent 
practices regarding charts. Second, the HCI community is arguably 
more aware of good data visualization practices. This is both a 
strength of our dataset because HCI charts may be more creative in 
their use of marks and visual channels, but also a weakness because 
charts may be clearer and exhibit fewer faws [10]. 

Further, we cannot guarantee that our tool is general enough to 
handle all charts. ChartDetective relies on fundamental attributes 
of charts and on the structure of the vector representation. We ver-
ifed these were reasonable and applied to major chart generators, 
but charts could use diferent encoding structures. Moreover, our 
system focused on the four most common data visualizations (bar, 
line, scatter, and box plots), but more work is needed to implement 
extractors for other types such as stacked bar, violin, and pie charts. 

8.1.4 Automatic Selections Through Suggestions. Considering the 
limitations of previous work, a goal of ChartDetective was to pre-
serve some user-control to allow the selection of specifc data, the 



CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

support of complex and diverse charts (D2), and the verifcation 
of the results (D4). While the time it took participants to extract 
charts was under 4 minutes, this could be further shortened by 
automating some tasks (D3). For example, participants often men-
tion the selection of error bars as the most tedious. We believe this 
could be improved through suggestions generated by continuously 
learning from user actions: after selecting the error bars for one 
series, the system could learn to recognize the characteristic shapes 
composing error bars and suggest repeating the action for other 
series. General selection suggestions could also be learned from 
the community and be ofered prior to the user frst selection, only 
based on the shapes identifed in the chart. We believe this active 
learning approach with suggestions is the best compromise between 
incorporating automation while preserving high controllability [70] 

8.2 Applications of ChartDetective 
ChartDetective can power several downstream tasks that require 
access to accurate data when only the charts are readily available. 
Specifcally, readers interested in re-analyzing the results presented 
in a chart can use ChartDetective to extract underlying data and 
then use it as input to their analysis, or to compare their results 
against. Other applications include the use of ChartDetective as 
an intermediate step to re-design existing charts: a chart found 
online or in a document might beneft from being redesigned if it 
is poorly structured or deceptive [10, 53, 61], uses a representation 
inefective to support users’ task [58, 66], is overblown and shows 
too many data points [77], or is not accessible because of its colour 
palette and style [41, 82]. For all these scenarios, the chart can be 
loaded in ChartDetective to let users select only the data of interest. 
Users can then export the underlying data to be visualized in an 
authoring tool, or, they can use the automatically reconstructed 
interactive chart and tweak its specifcation such as changing its 
aspect ratio to avoid deceptive charts that exaggerate or undermine 
slopes [61], its scale to remove truncated axes [10], its colour to 
make it print- and colorblind-safe [41], and its encodings to make 
it align with the user’s task [58, 66]. 

8.3 Takeaway for Chart Authors 
Through this work, we hope to encourage authors to share their 
fgures as vector graphics. Besides facilitating data extraction, vector 
graphics have numerous advantages: high quality at any resolution; 
more accessible; easily modifable; and typically smaller in size. All 
major chart generators have an option to export charts as vector 
graphics which can then be directly imported into documents such 
as LATEX, MS Word documents, or web pages. We also recommend 
authors carefully choose chart generators because they can difer 
in how well they represent data. For example, we found that MS 
Excel generated less accurate charts than either matplotlib, ggplot2, 
or plotly. Although these diferences are invisible to the naked-eye 
(Figure 7) they are a concern in the context of chart extraction. 

9 CONCLUSION 
We presented ChartDetective, a tool within the pipeline to extract 
data from charts using their vector representation. Through theo-
retical and experimental evidence, we showed the benefts of using 
vector graphics to extract data compared to using raster images. We 

identifed the challenges associated with building such a system, 
demonstrated opportunities for novel features, and evaluated its 
usability and quality of the extracted data. Recovering complete 
and accurate data is the frst step to tackle downstream tasks such 
as redesigning existing charts or making them dynamic, interactive, 
and accessible. Besides helping users recover this data, we hope 
our system serves as a building block to leverage the wealth of 
information currently locked inside static visualizations. 

ACKNOWLEDGMENTS 
This research received ethics clearance from the Ofce of Research 
Ethics, University of Waterloo. This work was made possible by 
NSERC Discovery Grant 2018-05187, the LAI Réapp, and the Agence 
Nationale de la Recherche (Discovery, ANR-19-CE33-0006). 

REFERENCES 
[1] Jacob Abbott, Haley MacLeod, Novia Nurain, Gustave Ekobe, and Sameer Patil. 

2019. Local Standards for Anonymization Practices in Health, Wellness, Accessibility, 
and Aging Research at CHI. Association for Computing Machinery, New York, 
NY, USA, 1–14. https://doi.org/10.1145/3290605.3300692 

[2] B. Tummers. 2006. DataThief III. https://www.datathief.org/. 
[3] Aaron Bangor, Philip T. Kortum, and James T. Miller. 2008. An Empirical Evalu-

ation of the System Usability Scale. International Journal of Human–Computer 
Interaction 24, 6 (2008), 574–594. https://doi.org/10.1080/10447310802205776 

[4] Liliana Barrios, Pietro Oldrati, David Lindlbauer, Marc Hilty, Helen Hayward-
Koennecke, Christian Holz, and Andreas Lutterotti. 2020. A Rapid Tapping Task 
on Commodity Smartphones to Assess Motor Fatigability. In Proceedings of the 
2020 CHI Conference on Human Factors in Computing Systems. Association for 
Computing Machinery, New York, NY, USA, 1–10. 

[5] Scott Bateman, Regan L. Mandryk, Carl Gutwin, Aaron Genest, David McDine, 
and Christopher Brooks. 2010. Useful Junk? The Efects of Visual Embellishment 
on Comprehension and Memorability of Charts. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI 
’10). Association for Computing Machinery, New York, NY, USA, 2573–2582. 
https://doi.org/10.1145/1753326.1753716 

[6] Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang, 
and Michael Stonebraker. 2018. Beagle: Automated Extraction and Interpre-
tation of Visualizations from the Web. In Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems (Montreal QC, Canada) (CHI 
’18). Association for Computing Machinery, New York, NY, USA, 1–8. https: 
//doi.org/10.1145/3173574.3174168 

[7] Michael Bostock, Vadim Ogievetsky, and Jefrey Heer. 2011. D3 Data-Driven 
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 
(Dec. 2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185 

[8] Bret Victor. 2011. Explorable Explanations. 
http://worrydream.com/ExplorableExplanations/. 

[9] Daniel Buschek, Martin Zürn, and Malin Eiband. 2021. The Impact of Multiple 
Parallel Phrase Suggestions on Email Input and Composition Behaviour of Native 
and Non-Native English Writers. In Proceedings of the 2021 CHI Conference on 
Human Factors in Computing Systems (CHI ’21). Association for Computing 
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3411764.3445372 

[10] Alberto Cairo. 2019. How Charts Lie: Getting Smarter about Visual Information

(illustrated edition ed.). WW Norton, New York. 
[11] Jinho Choi, Sanghun Jung, Deok Gun Park, Jaegul Choo, and Niklas Elmqvist. 

2019. Visualizing for the Non-Visual: Enabling the Visually Impaired to Use 
Visualization. Computer Graphics Forum 38, 3 (2019), 249–260. https://doi.org/ 
10.1111/cgf.13686 

[12] Sagnik Ray Choudhury, Shuting Wang, and C. Lee. Giles. 2016. Curve Separation 
for Line Graphs in Scholarly Documents. In 2016 IEEE/ACM Joint Conference on 
Digital Libraries (JCDL). IEEE, Newark, NJ, USA, 277–278. 

[13] Sagnik Ray Choudhury, Shuting Wang, and C. Lee. Giles. 2016. Scalable Algo-
rithms for Scholarly Figure Mining and Semantics. In Proceedings of the Inter-
national Workshop on Semantic Big Data - SBD ’16. ACM Press, San Francisco, 
California, 1–6. https://doi.org/10.1145/2928294.2928305 

[14] Ashley Colley, Sven Mayer, and Niels Henze. 2019. Investigating the Efect of 
Orientation and Visual Style on Touchscreen Slider Performance. In Proceedings 
of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). 
Association for Computing Machinery, New York, NY, USA, 1–9. https://doi. 
org/10.1145/3290605.3300419 

[15] Kenny Davila, Bhargava Urala Kota, Srirangaraj Setlur, Venu Govindaraju, 
Christopher Tensmeyer, Sumit Shekhar, and Ritwick Chaudhry. 2019. ICDAR 2019 

https://doi.org/10.1145/3290605.3300692
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1145/1753326.1753716
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3411764.3445372
https://doi.org/10.1111/cgf.13686
https://doi.org/10.1111/cgf.13686
https://doi.org/10.1145/2928294.2928305
https://doi.org/10.1145/3290605.3300419
https://doi.org/10.1145/3290605.3300419
http://worrydream.com/ExplorableExplanations


ChartDetective CHI ’23, April 23–28, 2023, Hamburg, Germany 

Competition on Harvesting Raw Tables from Infographics (CHART-Infographics). 
In 2019 International Conference on Document Analysis and Recognition (ICDAR). 
IEEE, Sydney, NSW, Australia, 1594–1599. https://doi.org/10.1109/ICDAR.2019. 
00203 

[16] Kenny Davila, Srirangaraj Setlur, David Doermann, Bhargava Urala Kota, and 
Venu Govindaraju. 2021. Chart Mining: A Survey of Methods for Automated 
Chart Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 
43, 11 (Nov. 2021), 3799–3819. https://doi.org/10.1109/TPAMI.2020.2992028 

[17] Kenny Davila, Chris Tensmeyer, Sumit Shekhar, Hrituraj Singh, Srirangaraj Setlur, 
and Venu Govindaraju. 2021. ICPR 2020 - Competition on Harvesting Raw Tables 
from Infographics. In Pattern Recognition. ICPR International Workshops and Chal-
lenges (Lecture Notes in Computer Science), Alberto Del Bimbo, Rita Cucchiara, 
Stan Sclarof, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Es-
calante, and Roberto Vezzani (Eds.). Springer International Publishing, Cham, 
361–380. https://doi.org/10.1007/978-3-030-68793-9_27 

[18] Markus Demleitner. 2010. Dexter. 
[19] Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge Yao, and Chin-Yew Lin. 2018. 

Data2Text Studio: Automated Text Generation from Structured Data. In Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing: 
System Demonstrations. Association for Computational Linguistics, Brussels, Bel-
gium, 13–18. https://doi.org/10.18653/v1/D18-2003 

[20] Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny 
Chevalier. 2019. Increasing the Transparency of Research Papers with Explorable 
Multiverse Analyses. In Proceedings of the 2019 CHI Conference on Human Factors 
in Computing Systems (CHI ’19). Association for Computing Machinery, New 
York, NY, USA, 1–15. https://doi.org/10.1145/3290605.3300295 

[21] David R. Flatla, Alan R. Andrade, Ross D. Teviotdale, Dylan L. Knowles, and 
Craig Stewart. 2015. ColourID: Improving Colour Identifcation for People with 
Impaired Colour Vision. In Proceedings of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems (CHI ’15). Association for Computing 
Machinery, New York, NY, USA, 3543–3552. https://doi.org/10.1145/2702123. 
2702578 

[22] Herbert Freeman. 1961. On the Encoding of Arbitrary Geometric Confgurations. 
IRE Transactions on Electronic Computers EC-10, 2 (1961), 260–268. https://doi. 
org/10.1109/TEC.1961.5219197 

[23] Jérémy Frey, Maxime Daniel, Julien Castet, Martin Hachet, and Fabien Lotte. 2016. 
Framework for Electroencephalography-based Evaluation of User Experience. In 
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems 
(CHI ’16). Association for Computing Machinery, New York, NY, USA, 2283–2294. 
https://doi.org/10.1145/2858036.2858525 

[24] Jinglun Gao, Yin Zhou, and Kenneth E. Barner. 2012. View: Visual Information 
Extraction Widget for Improving Chart Images Accessibility. In 2012 19th IEEE 
International Conference on Image Processing. IEEE, Orlando, FL, USA, 2865–2868. 
https://doi.org/10.1109/ICIP.2012.6467497 

[25] Tong Ge, Yue Zhao, Bongshin Lee, Donghao Ren, Baoquan Chen, and Yunhai 
Wang. 2020. Canis: A High-Level Language for Data-Driven Chart Animations. 
Computer Graphics Forum 39, 3 (June 2020), 607–617. https://doi.org/10.1111/ 
cgf.14005 

[26] Arnd Gross, Sibylle Schirm, and Markus Scholz. 2014. Ycasd– a Tool for Capturing 
and Scaling Data from Graphical Representations. BMC Bioinformatics 15, 1 (June 
2014), 219. https://doi.org/10.1186/1471-2105-15-219 

[27] Tovi Grossman and George Fitzmaurice. 2010. ToolClips: An Investigation of 
Contextual Video Assistance for Functionality Understanding. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, 
USA) (CHI ’10). Association for Computing Machinery, New York, NY, USA, 
1515–1524. https://doi.org/10.1145/1753326.1753552 

[28] Tovi Grossman, Nicholas Kong, and Ravin Balakrishnan. 2007. Modeling Pointing 
at Targets of Arbitrary Shapes. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems. ACM, San Jose California USA, 463–472. https: 
//doi.org/10.1145/1240624.1240700 

[29] Jonathan Harper and Maneesh Agrawala. 2014. Deconstructing and Restyling D3 
Visualizations. In Proceedings of the 27th Annual ACM Symposium on User Interface 
Software and Technology (UIST ’14). Association for Computing Machinery, New 
York, NY, USA, 253–262. https://doi.org/10.1145/2642918.2647411 

[30] Jonathan Harper and Maneesh Agrawala. 2018. Converting Basic D3 Charts 
into Reusable Style Templates. IEEE Transactions on Visualization and Computer 
Graphics 24, 3 (March 2018), 1274–1286. https://doi.org/10.1109/TVCG.2017. 
2659744 

[31] Enamul Hoque and Maneesh Agrawala. 2020. Searching the Visual Style and 
Structure of D3 Visualizations. IEEE Transactions on Visualization and Computer 
Graphics 26, 1 (Jan. 2020), 1236–1245. https://doi.org/10.1109/TVCG.2019.2934431 

[32] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems the CHI Is the 
Limit - CHI ’99. ACM Press, Pittsburgh, Pennsylvania, United States, 159–166. 
https://doi.org/10.1145/302979.303030 

[33] IEEE. 2022. Resolution and Size. https://journals.ieeeauthorcenter.ieee.org/create-
your-ieee-journal-article/create-graphics-for-your-article/resolution-and-size/. 

[34] Daniel Johnson, Lennart E. Nacke, and Peta Wyeth. 2015. All about That Base: 
Difering Player Experiences in Video Game Genres and the Unique Case of 
MOBA Games. In Proceedings of the 33rd Annual ACM Conference on Human 
Factors in Computing Systems (CHI ’15). Association for Computing Machinery, 
New York, NY, USA, 2265–2274. https://doi.org/10.1145/2702123.2702447 

[35] Patrick W. Jordan, B. Thomas, Ian Lyall McClelland, and Bernard Weerdmeester 
(Eds.). 1996. Usability Evaluation In Industry (1st edition ed.). CRC Press, London 
; Bristol, Pa. 

[36] Joseph A. Huwaldt. 2001. Plot Digitizer. http://plotdigitizer.sourceforge.net/. 
[37] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeong-in Hwang, Bongshin Lee, 

Bohyoung Kim, and Jinwook Seo. 2017. ChartSense: Interactive Data Extraction 
from Chart Images. In Proceedings of the 2017 CHI Conference on Human Factors in 
Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing 
Machinery, New York, NY, USA, 6706–6717. https://doi.org/10.1145/3025453. 
3025957 

[38] Hernisa Kacorri, Kris M. Kitani, Jefrey P. Bigham, and Chieko Asakawa. 2017. 
People with Visual Impairment Training Personal Object Recognizers: Feasibility 
and Challenges. In Proceedings of the 2017 CHI Conference on Human Factors in 
Computing Systems (CHI ’17). Association for Computing Machinery, New York, 
NY, USA, 5839–5849. https://doi.org/10.1145/3025453.3025899 

[39] Kushal Kafe, Brian Price, Scott Cohen, and Christopher Kanan. 2018. DVQA: 
Understanding Data Visualizations via Question Answering. In 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, 
5648–5656. https://doi.org/10.1109/CVPR.2018.00592 

[40] Dae Hyun Kim, Enamul Hoque, and Maneesh Agrawala. 2020. Answering 
Questions about Charts and Generating Visual Explanations. In Proceedings 
of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). 
Association for Computing Machinery, New York, NY, USA, 1–13. https: 
//doi.org/10.1145/3313831.3376467 

[41] N. W. Kim, S. C. Joyner, A. Riegelhuth, and Y. Kim. 2021. Accessible Visualization: 
Design Space, Opportunities, and Challenges. Computer Graphics Forum 40, 3 
(2021), 173–188. https://doi.org/10.1111/cgf.14298 

[42] Nicholas Kong and Maneesh Agrawala. 2012. Graphical Overlays: Using Layered 
Elements to Aid Chart Reading. IEEE Transactions on Visualization and Computer 
Graphics 18, 12 (Dec. 2012), 2631–2638. https://doi.org/10.1109/TVCG.2012.229 

[43] Nicholas Kong, Marti A. Hearst, and Maneesh Agrawala. 2014. Extracting Refer-
ences between Text and Charts via Crowdsourcing. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (CHI ’14). Association for 
Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/ 
2556288.2557241 

[44] Chufan Lai, Zhixian Lin, Ruike Jiang, Yun Han, Can Liu, and Xiaoru Yuan. 2020. 
Automatic Annotation Synchronizing with Textual Description for Visualization. 
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems

(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, 
NY, USA, 1–13. https://doi.org/10.1145/3313831.3376443 

[45] Jill H. Larkin and Herbert A. Simon. 1987. Why a Diagram Is (Sometimes) 
Worth Ten Thousand Words. Cognitive Science 11, 1 (1987), 65–100. https: 
//doi.org/10.1111/j.1551-6708.1987.tb00863.x 

[46] Luis A. Leiva, Daniel Martín-Albo, Réjean Plamondon, and Radu-Daniel Vatavu. 
2018. KeyTime: Super-Accurate Prediction of Stroke Gesture Production Times. 
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 
ACM, Montreal QC Canada, 1–12. https://doi.org/10.1145/3173574.3173813 

[47] Haotian Li, Yong Wang, Aoyu Wu, Huan Wei, and Huamin Qu. 2022. Structure-
Aware Visualization Retrieval. In CHI Conference on Human Factors in Computing 
Systems (CHI ’22). Association for Computing Machinery, New York, NY, USA, 
1–14. https://doi.org/10.1145/3491102.3502048 

[48] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. 2020. 
Diferentiable Vector Graphics Rasterization for Editing and Learning. ACM 
Transactions on Graphics 39, 6 (Nov. 2020), 193:1–193:15. https://doi.org/10.1145/ 
3414685.3417871 

[49] Can Liu, Olivier Chapuis, Michel Beaudouin-Lafon, and Eric Lecolinet. 2016. 
Shared Interaction on a Wall-Sized Display in a Data Manipulation Task. In 
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems 
(CHI ’16). Association for Computing Machinery, New York, NY, USA, 2075–2086. 
https://doi.org/10.1145/2858036.2858039 

[50] Weihong Ma, Hesuo Zhang, Shuang Yan, Guangshun Yao, Yichao Huang, Hui Li, 
Yaqiang Wu, and Lianwen Jin. 2021. Towards an Efcient Framework for Data 
Extraction from Chart Images. arXiv:2105.02039 [cs] 

[51] Eva Mackamul. 2022. Improving the Discoverability of Interactions in Interactive 
Systems. In CHI Conference on Human Factors in Computing Systems Extended 
Abstracts (New Orleans, LA, USA) (CHI EA ’22). Association for Computing 
Machinery, New York, NY, USA, Article 57, 5 pages. https://doi.org/10.1145/ 
3491101.3503813 

[52] Mark Mitchell, Baurzhan Muftakhidinov and Tobias Winchen et al. 2015. Engauge 
Digitizer. http://markummitchell.github.io/engauge-digitizer/. 

[53] Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2023. Chara-
graph: Interactive Generation of Charts for Realtime Annotation of Data-Rich 

https://doi.org/10.1109/ICDAR.2019.00203
https://doi.org/10.1109/ICDAR.2019.00203
https://doi.org/10.1109/TPAMI.2020.2992028
https://doi.org/10.1007/978-3-030-68793-9_27
https://doi.org/10.18653/v1/D18-2003
https://doi.org/10.1145/3290605.3300295
https://doi.org/10.1145/2702123.2702578
https://doi.org/10.1145/2702123.2702578
https://doi.org/10.1109/TEC.1961.5219197
https://doi.org/10.1109/TEC.1961.5219197
https://doi.org/10.1145/2858036.2858525
https://doi.org/10.1109/ICIP.2012.6467497
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1186/1471-2105-15-219
https://doi.org/10.1145/1753326.1753552
https://doi.org/10.1145/1240624.1240700
https://doi.org/10.1145/1240624.1240700
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/2702123.2702447
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/3025453.3025899
https://doi.org/10.1109/CVPR.2018.00592
https://doi.org/10.1145/3313831.3376467
https://doi.org/10.1145/3313831.3376467
https://doi.org/10.1111/cgf.14298
https://doi.org/10.1109/TVCG.2012.229
https://doi.org/10.1145/2556288.2557241
https://doi.org/10.1145/2556288.2557241
https://doi.org/10.1145/3313831.3376443
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1145/3173574.3173813
https://doi.org/10.1145/3491102.3502048
https://doi.org/10.1145/3414685.3417871
https://doi.org/10.1145/3414685.3417871
https://doi.org/10.1145/2858036.2858039
https://arxiv.org/abs/2105.02039
https://doi.org/10.1145/3491101.3503813
https://doi.org/10.1145/3491101.3503813
http://markummitchell.github.io/engauge-digitizer
http://plotdigitizer.sourceforge.net


CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez 

Paragraphs. In Proceedings of the 2023 CHI Conference on Human Factors in Com-

puting Systems (Hamburg, Germany) (CHI ’23). Association for Computing Ma-
chinery, New York, NY, USA, 18 pages. https://doi.org/10.1145/3544548.3581091 

[54] Damien Masson, Sylvain Malacria, Edward Lank, and Géry Casiez. 2020. 
Chameleon: Bringing Interactivity to Static Digital Documents. Association for 
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/ 
3313831.3376559 

[55] Damien Masson, Jo Vermeulen, George Fitzmaurice, and Justin Matejka. 2022. 
Supercharging Trial-and-Error for Learning Complex Software Applications. In 
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) 
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 
381, 13 pages. https://doi.org/10.1145/3491102.3501895 

[56] J. Nathan Matias, Sayamindu Dasgupta, and Benjamin Mako Hill. 2016. Skill 
Progression in Scratch Revisited. In Proceedings of the 2016 CHI Conference on 
Human Factors in Computing Systems (CHI ’16). Association for Computing 
Machinery, New York, NY, USA, 1486–1490. https://doi.org/10.1145/2858036. 
2858349 

[57] Gonzalo Gabriel Méndez, Miguel A. Nacenta, and Sebastien Vandenheste. 2016. 
iVoLVER: Interactive Visual Language for Visualization Extraction and Recon-
struction. In Proceedings of the 2016 CHI Conference on Human Factors in Com-

puting Systems (CHI ’16). Association for Computing Machinery, New York, NY, 
USA, 4073–4085. https://doi.org/10.1145/2858036.2858435 

[58] Tamara Munzner. 2014. Visualization Analysis and Design (1st edition ed.). A K 
Peters/CRC Press, Boca Raton. 

[59] Donald A. Norman. 1994. How Might People Interact with Agents. Commun. 
ACM 37, 7 (July 1994), 68–71. https://doi.org/10.1145/176789.176796 

[60] Jason Obeid and Enamul Hoque. 2020. Chart-to-Text: Generating Natural Lan-
guage Descriptions for Charts by Adapting the Transformer Model. In Proceedings 
of the 13th International Conference on Natural Language Generation. Association 
for Computational Linguistics, Dublin, Ireland, 138–147. 

[61] Anshul Vikram Pandey, Katharina Rall, Margaret L. Satterthwaite, Oded Nov, 
and Enrico Bertini. 2015. How Deceptive Are Deceptive Visualizations? An 
Empirical Analysis of Common Distortion Techniques. In Proceedings of the 
33rd Annual ACM Conference on Human Factors in Computing Systems (CHI 
’15). Association for Computing Machinery, New York, NY, USA, 1469–1478. 
https://doi.org/10.1145/2702123.2702608 

[62] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on 
Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on 
Natural Language Processing (Volume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, 1470–1480. https://doi.org/10.3115/v1/P15-1142 

[63] Jorge Poco and Jefrey Heer. 2017. Reverse-Engineering Visualizations: Recov-
ering Visual Encodings from Chart Images. Comput. Graph. Forum 36, 3 (June 
2017), 353–363. https://doi.org/10.1111/cgf.13193 

[64] Jorge Poco, Angela Mayhua, and Jefrey Heer. 2018. Extracting and Retargeting 
Color Mappings from Bitmap Images of Visualizations. IEEE Transactions on 
Visualization and Computer Graphics 24, 1 (Jan. 2018), 637–646. https://doi.org/ 
10.1109/TVCG.2017.2744320 

[65] T. Poisot. 2011. The Digitize Package: Extracting Numerical Data from Scatter-
plots. The R Journal 3, 1 (2011), 25–26. 

[66] Ghulam Jilani Quadri and Paul Rosen. 2022. A Survey of Perception-Based 
Visualization Studies by Task. IEEE Transactions on Visualization and Computer 
Graphics 28, 12 (Dec. 2022), 5026–5048. https://doi.org/10.1109/TVCG.2021. 
3098240 

[67] Donghao Ren, Tobias Höllerer, and Xiaoru Yuan. 2014. iVisDesigner: Expres-
sive Interactive Design of Information Visualizations. IEEE Transactions on 
Visualization and Computer Graphics 20, 12 (Dec. 2014), 2092–2101. https: 
//doi.org/10.1109/TVCG.2014.2346291 

[68] Ankit Rohatgi. 2021. Webplotdigitizer: Version 4.5. 
[69] Quentin Roy, Simon Tangi Perrault, Katherine Fennedy, Thomas Pietrzak, and 

Anne Roudaut. 2021. Understanding User Strategies When Touching Arbitrary 
Shaped Objects. In Proceedings of the 23rd International Conference on Mobile 
Human-Computer Interaction (MobileHCI ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3447526.3472038 

[70] Quentin Roy, Futian Zhang, and Daniel Vogel. 2019. Automation Accuracy Is 
Good, but High Controllability May Be Better. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems (CHI ’19). Association for 
Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3290605. 
3300750 

[71] Arvind Satyanarayan and Jefrey Heer. 2014. Lyra: An Interactive Visualization 
Design Environment. Computer Graphics Forum 33, 3 (2014), 351–360. https: 
//doi.org/10.1111/cgf.12391 

[72] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer. 
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on 
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://doi.org/ 
10.1109/TVCG.2016.2599030 

[73] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and 
Jefrey Heer. 2011. ReVision: Automated Classifcation, Analysis and Redesign 

of Chart Images. In Proceedings of the 24th Annual ACM Symposium on User 
Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). 
Association for Computing Machinery, New York, NY, USA, 393–402. https: 
//doi.org/10.1145/2047196.2047247 

[74] Mingyan Shao and Robert P. Futrelle. 2006. Recognition and Classifcation of 
Figures in PDF Documents. In Graphics Recognition. Ten Years Review and Future 
Perspectives (Lecture Notes in Computer Science), Wenyin Liu and Josep Lladós 
(Eds.). Springer, Berlin, Heidelberg, 231–242. https://doi.org/10.1007/11767978_ 
21 

[75] Springer. 2022. Conference Proceedings Guidelines | Springer. 
https://www.springer.com/gp/computer-science/lncs/conference-proceedings-
guidelines. 

[76] Arjun Srinivasan, Steven M. Drucker, Alex Endert, and John Stasko. 2019. Aug-
menting Visualizations with Interactive Data Facts to Facilitate Interpretation 
and Communication. IEEE Transactions on Visualization and Computer Graphics 
25, 1 (Jan. 2019), 672–681. https://doi.org/10.1109/TVCG.2018.2865145 

[77] Edward Tufte. 2006. Beautiful Evidence. Graphics Press, Cheshire, Conn. 
[78] John Tukey. 1977. Exploratory Data Analysis (1st edition ed.). Pearson, Reading, 

Mass. 
[79] Aditya Vashistha, Pooja Sethi, and Richard Anderson. 2017. Respeak: A Voice-

based, Crowd-powered Speech Transcription System. In Proceedings of the 2017 
CHI Conference on Human Factors in Computing Systems (CHI ’17). Association 
for Computing Machinery, New York, NY, USA, 1855–1866. https://doi.org/10. 
1145/3025453.3025640 

[80] Chat Wacharamanotham, Lukas Eisenring, Steve Haroz, and Florian Echtler. 2020. 
Transparency of CHI Research Artifacts: Results of a Self-Reported Survey. In 
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, 
NY, USA, 1–14. https://doi.org/10.1145/3313831.3376448 

[81] Michelle Q. Wang Baldonado, Allison Woodruf, and Allan Kuchinsky. 2000. 
Guidelines for Using Multiple Views in Information Visualization. In Proceedings 
of the Working Conference on Advanced Visual Interfaces (Palermo, Italy) (AVI ’00). 
Association for Computing Machinery, New York, NY, USA, 110–119. https: 
//doi.org/10.1145/345513.345271 

[82] Keke Wu, Emma Petersen, Tahmina Ahmad, David Burlinson, Shea Tanis, and 
Danielle Albers Szafr. 2021. Understanding Data Accessibility for People with 
Intellectual and Developmental Disabilities. In Proceedings of the 2021 CHI Confer-
ence on Human Factors in Computing Systems (CHI ’21). Association for Computing 
Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3411764.3445743 

[83] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and Yuanchun Shi. 
2017. Tap, Dwell or Gesture? Exploring Head-Based Text Entry Techniques for 
HMDs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing 
Systems (CHI ’17). Association for Computing Machinery, New York, NY, USA, 
4479–4488. https://doi.org/10.1145/3025453.3025964 

A APPENDIX 
A.1 Extraction Algorithms 
All the extraction algorithms work by taking as input a user selec-
tion (i.e., a list of shapes) and outputting an array of coordinates that 
should be added to the extracted data. A shape is defned by a list 
of points (corners). To give consistent specifcations to extractors, 
all shapes are pre-processed to be subdivided into smaller units 
everytime they use the “moveto” feature (C2), see Algorithm 6. For 
clarity reasons, the pseudo-code focuses on one specifc orientation: 
vertical bars, box plots, and axes and horizontal lines. 

Algorithm 1: Extraction of bars 

Input: A user selection of shapes �ℎ���� 
Output: An array of 2D coordinates 
������ ← [] 
foreach � ∈ �ℎ���� do 

add (middle of � , top of �) to ������ 
return ������ 

https://doi.org/10.1145/3544548.3581091
https://doi.org/10.1145/3313831.3376559
https://doi.org/10.1145/3313831.3376559
https://doi.org/10.1145/3491102.3501895
https://doi.org/10.1145/2858036.2858349
https://doi.org/10.1145/2858036.2858349
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1145/176789.176796
https://doi.org/10.1145/2702123.2702608
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.1111/cgf.13193
https://doi.org/10.1109/TVCG.2017.2744320
https://doi.org/10.1109/TVCG.2017.2744320
https://doi.org/10.1109/TVCG.2021.3098240
https://doi.org/10.1109/TVCG.2021.3098240
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1145/3447526.3472038
https://doi.org/10.1145/3290605.3300750
https://doi.org/10.1145/3290605.3300750
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1007/11767978_21
https://doi.org/10.1007/11767978_21
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1145/3025453.3025640
https://doi.org/10.1145/3025453.3025640
https://doi.org/10.1145/3313831.3376448
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/3411764.3445743
https://doi.org/10.1145/3025453.3025964
https://www.springer.com/gp/computer-science/lncs/conference-proceedings


ChartDetective 

Algorithm 2: Extraction of scatters 

Input: A user selection of shapes �ℎ���� 
Output: An array of 2D coordinates 
������ ← [] 
foreach � ∈ �ℎ���� do 

add centre of � to ������ 
return ������ 

Algorithm 3: Extraction of axis 

Input: A user selection of shapes �ℎ���� 
Output: An array of 2D coordinates 
������ ← [] 
foreach � ∈ �ℎ���� do 

if � is text then 
add (text of � , centre of �) to ������ 

return ������ 

Algorithm 4: Extraction of lines 

Input: A user selection of shapes �ℎ���� 
Output: An array of 2D coordinates 
������ ← [] 
foreach � ∈ �ℎ���� do 

foreach �� ∈ � do 
add �� to ������ 

return ������ 

Algorithm 5: Extraction of box plots 

Input: A user selection of shapes �ℎ���� 
Output: An array of 2D coordinates 
������ ← [] 
������ ← group �ℎ���� with equal horizontal positions 
foreach ����� ∈ ������ do 

��� ← y of ����� [0]
��� ← top of ����� [0]
�1 ← ��� 
�3 ← ��� 
������� ← [] 
foreach �ℎ��� ∈ ����� do 

if �ℎ��� is horizontal line then 
add vertical centre of �ℎ��� to ������� 

if �ℎ��� is rectangle then 
�1 ← y of �ℎ��� 
�3 ← top of �ℎ��� 

foreach ������ ∈ ������� do 
if ������ > �1 and ������ < �3 then 

add (middle of ����� , ������) to ������ 

add (middle of ����� , ���) to ������ 
add (middle of ����� , ��� ) to ������ 
add (middle of ����� , �1) to ������ 
add (middle of ����� , �3) to ������ 

return ������ 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

Algorithm 6: Split a compound shape 

Input: A shape � 
Output: An array of shapes 
�ℎ���� ← [] 
���ℎ ← [] 
foreach ��� ∈ path of � do 

if ��� is moveto then 
add shape formed from ���ℎ to �ℎ���� 
���ℎ ← [] 

add ��� to ���ℎ 
return �ℎ���� 


	Abstract
	1 Introduction
	2 Related Work
	2.1 Involving Users to Improve Accuracy of Chart Data Extraction
	2.2 Leveraging Structured File Formats

	3 Background
	3.1 How Can Data be Recovered From Charts?
	3.2 Advantages of Vector Graphics

	4 Challenges and Design Goals
	4.1 Challenges of Vector Chart Extraction
	4.2 Design Goals

	5 ChartDetective
	5.1 Interface
	5.2 Selection of Chart Elements
	5.3 Extraction of Data
	5.4 Verify Results
	5.5 Getting Started and Interacting
	5.6 Implementation

	6 Usability Study
	6.1 Participants
	6.2 Dataset of Charts to Extract
	6.3 Procedure and Design
	6.4 Results

	7 Data Quality Study
	7.1 Dataset
	7.2 Baseline
	7.3 Procedure
	7.4 Results

	8 Discussion
	8.1 Limitations and Future Work
	8.2 Applications of ChartDetective
	8.3 Takeaway for Chart Authors

	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Extraction Algorithms




